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Two methods are proposed for identifying plan e cracks in an anistropic elastic medium, based either on the use of a "non- 
reciprocity" functional or on the non-classical method of boundary integral equations and leading to the solution of certain 
transcendental equations. Examples of the reconstruction of rectilinear cracks in a square region are examined. © 2005 Elsevier 
Ltd. All rights reserved. 

In problems of identifying cracks in an elastic solid from the field on the surface of the solid, different 
versions of the boundary integral equation method are generally used as the basis for obtaining resolving 
operator equations. On the basis of this method it is possible to formulate systems of non-linear operator 
equations which are solved by iteration schemes [1-3]. In recent years, approaches to identifying cracks, 
based on the "non-reciprocity" functional (for the Laplace equation in recording thermal or electric 
fields) and a priori information about the crack (or system of cracks) situated in a certain plane, have 
begun to be developed intensively [4-7]. The availability of such a priori information considerably 
simplifies the procedure for reconstructing cracks and, for determining the parameters of a plane, leads 
either to a system of transcendental equations or to the problem of minimizing a certain non-quadratic 
discrepancy functional. Note that the calculation of wave fields in elastic solids based on the reciprocity 
theorem has undergone rapid development in recent years [8, 9]. 

Two methods of determining the position of a plane with cracks are examined below: the first involves 
formulating the "non-reciprocity" functional and selecting trial solutions, and the second is based on 
non-classical boundary integral equations for anisotropic solids with cracks, generalizing earlier results 
[10-12] for solids without defects. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Suppose an elastic solid occupying a finite, simply connected region Vwith a boundary S performs steady 
oscillations with an angular velocity co, the body being weakened by a system of cracks 

F = 
M + 

Q.) Fp (Fp = Fp u Fp)  
p = l  

which are modelled by cuts in the cross-section Sc of the region Vwith a certain surface gl. 
The equations of steady oscillations have the form [13] 

2 
(Yij, j = - D  O )̀ Ui' (Yij = Cijklblk, l ' i = 1,2,3, x 6  V \ F  (1.1) 

We will assume that, in the direct problem, the stress vector on the external boundary S is specified, 
and the sides of the cracks do not interact with each other during the oscillations 
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tils = ' ijnjls - -  * , ,  t ,  - -  0 ,  p -- 1, 2 . . . . .  M (1.2) 

In formulating the inverse problem, in which the equation of the surface H and the crack geometry 
are determined, we will assume that, on the boundary S, all components of the displacement vector 
are known 

blil S = / l / i ,  (1.3) 

Remark. In principle, to solve the inverse problem it is sufficient to know the displacement field on 
part of the boundary, and, to extend the field to the entire boundary of the solid, the procedure proposed 
earlier [14-16] is used. 

2. R E C O R D I N G  OF CRACKS 

Cracks in a solid can be found from the discrepancy between the boundary wave fields of stresses and 
displacements for the solid with and without defects. As a measure of this discrepancy, we will introduce 
into consideration the linear functional 

F(u__*, o~) = G((~, gt, u_*) = [(Vi** - V*Oi) dS (2.1) 
S 

on a set of trial solutions u'satisfying the equations of motion in the region Vwithout cracks 

2 ~ ~ :~ ~* • = - p o 3  u i ,  i = 1 , 2 , 3 ,  x e V (2.2) IJ, j (Yi j  -~ Ci jk lUk,  l - 

where ~* and ~* are components of the displacement vector and stress vector of the trial solution on 
the boundary S 

U*[s = ~* ,  t*ls = ~*njl  s = •* (2.3) 

Note that plane waves in an unbound elastic medium can be used as solutions of this kind. 
Using the reciprocity theorem [13], it can be shown that 

I z i q * d S  = G(O, ~ ,  _u*) = F(_u*, ~o) (2.4) 

F + 

where Zi = ui Iv+ - ui]F- are the displacement jumps on cracks, and q*[ r+ = ~Y/~nJ] r+ are components 
of the vector o f  trial stresses on the sides of cracks. 

Where there are no cracks, the functional F(u_*, o)) is identically equal to zero, since relation (2.4) 
is transformed into the well-known reciprocity relation. Note that the functional (2.1) in the present 
formulation, where the strain and stress fields are known on the entire boundary of the solid, can be 
calculated for any trial field. Thus, knowing the accuracy of the measurement of the boundary fields 
and the accuracy of the calculation of the integral (2.1), from the deviation of the functional from a 
zero value it is possible to judge the presence or absence of cracks in the body. The inverse problem 
is solved most simply when a priori information indicates that the surface H is a plane. 

3. S E L E C T I O N  OF T R I A L  S O L U T I O N S  AND 
D E T E R M I N A T I O N  OF THE P L A N E  FI 

A n  anisotropic elastic solid. From Eq. (2.4), by an appropriate selection of trial solutions possessing a 
sufficient functional arbitrariness, a system of integral equations can be obtained for finding displacement 
jumps on cracks. The first stage of this procedure is to determine the plane FI, which can be specified 
by three independent parameters (for example, two Euler angles and the distance c to the origin of 
coordinates). The trial solutions must be selected in such a way that the parameters characterizing the 
plane H are found most simply, and here one of the methods of making such a selection leads to the 
elimination of unknown displacement jumps. 
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For this, we will introduce a new system of coordinates OX1X2X3, in which the equation of the plane 
FI has the form X3 = c. The position of such a system of coordinates with respect to the initial system 
is defined by the two angles q~ and 0: the angle q0 gives the rotation about the axis Ox3, and the angle 
0 gives the rotation about the axis OX 1. 

The notation Ui and U* (i = 1, 2, 3) will be used for the vector components of the solution of boundary- 
values problem (1.1), (1.2) and the trial solution (2.2), (2.3) in the new system of coordinates. The left- 
hand side of relation (2.4) in the adopted notation will take the form 

I • i q ? d S  = I x i o ?  dS (3.1) 

F + F + 

where 

Xi = Uilr . -  Ui[r-, Q* = O*x,x3 (3.2) 

As trial solutions we will select a system of functions comprising waves propagating along X3 axis. 

U~ = Akexp(io~X3) (3.3) 

Substituting expressions (3.3) into Eqs (2.2), from the condition for non-zero trial solutions for the 
wave parameter c~ to exist we will obtain the well-known Christoffel equation [13], which has three pairs 
of solutions - real manifolds (among which multiple values may also be encountered) 

+ 
0~; = "t-O~j(Ciklm , q), 0),  j ---- l, 2, 3 (3.4) 

corresponding to different types of wave propagating in an infinite elastic anisotropic medium. 
Substitution of the corresponding set of six solutions (3.3), (3.4) into relation (2.4) leads to a system 

of six algebraic equations in % 0, c and I1, I2, 13 (li ~ ; X i d S  ) in which the quantities Ii occur  linearly, 

which enables us to eliminate them and to obtain three transcendental equations in the parameters of 
the plane 17. 

An isotropic elastic solid. For an isotropic medium this combination of six equations has a fairly simple 
form, corresponding to a longitudinal wave and two transverse waves 

U *1 = (cosk2X3, 0, 0),  _U .2 = (sink2X3, 0, 0) 

U .3 = (0, coskzX3, 0), 

U .5 = (0,0, cosklX3), 

U .4 :-- (0, sink2X3, 0) 

U .6 = (0, O, sinklX3) 

(3.5) 

where k 1 = ~/9~02/(~. + 2g) and k2 = ~/90~2/g are the longitudinal and transverse wave numbers, 
respectively. The vectors of the trial stresses in the cross-section Sc correspondingly have the forms 

Q.I ---- (_gk2sink2c ' 0, 0), Q.2 = (~tk2cosk2c, O, O) 

_Q.3 = (0, -gk2sink2c, 0), _Q.4 = (0, gk2cosk2c, 0) (3.6) 

Q.5 = (O,O,_(~.+2g)klsinklC) ' Q.6 = (O,O,_(~,+2~t)klcOSklC) 

Substituting expressions (3.6) into relations (2.4), we obtain six equations in the six unknown quantities 
% 0, c, I1,/2 and I 3 

-llgk2sink2c = G(~p, ~, U_*1), Ii~k2cosk2c = G(d?, Itl, _U .2) 

-I2gk2sink2c = G(~_, ~, f * 3 ) ,  I2btk2eosk2c = G(~p, Ilt, U .4)  (3.7) 
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-13(~.+2~t)klsinklc = G(~,~,_U*5), 13(~+2~t )k lcOSklC = G((~,II/,_U .6) 

Assuming that I1, I2 and I3 are not equal to zero, we reduce system (3.7) to three equations in % 0 
and c that define plane 17 

F12(q) , 0 ) -  F34(% 0) = 0 (3.8) 

tgk2c = F34((D, 0) ,  tgk lc  = F56(q), 0) (3.9) 

where 

Fij(q), O) = -G((~, ~, u_*i)/G(qJ, ~, U_ *j) 

Plane strain of an &otropic elastic solid. In the case of plane strain (in the plane OX2X3) , the position 
of the plane 13 is defined by the angle 0 and the distance c. These parameters, together with integral 
jumps I2 and/3, are connected by four equations of the form (3.7) which, after eliminating the parameters 
I2 and 13, reduce to a system of equations of the form (3.9) with q0 = 0. 

If d is the diameter of the cross-section (in the plane OXzX3) of the region V, then, for the oscillation 
frequencies 

f = ~'-~<~'-~ 

this system reduces to the single equation 

arctgF34(0, 0 ) -  J ~ a r c t g F 5 6 ( 0 ,  O) = 0, 0 E [0, g] (3.1o) 

after solving which the distance c is found from one of the formulae 

c = kTlarctgF56(0, 0) or c = kzlarctgF34(0, 0) (3.11) 

4. D E T E R M I N A T I O N  OF T H E  P L A N E  c U S I N G  A B O U N D A R Y  
I N T E G R A L  E Q U A T I O N  OF T H E  F I R S T  KIND 

Reduction of boundary-value problem (1.1), (1.2) to a boundary integral equation of the first kind. For 
finite isotropic solids, a method has been proposed [10] for formulating a system of boundary integral 
equations of the first kind with smooth kernels for cracked solids that does not require a knowledge 
of the fundamental solutions of the theory of elasticity operator. This approach has been extended [11, 
12] to finite anisotropic solids without defects. We will generalize this result for the case of an anisotropic 
solid with a crack or a system of cracks located on a certain surface. 

Using the approach of the theory of dislocations [13], problem (1.1), (1.2) is equivalent to the 
boundary-value problem for a continuous solid Vwith mass forces 

f i = - (  Cij~lnk)~lS(4) ),j 

concentrated on the surface F, where n k represents the vector components of the normal to the surface 
F, 8(4) is the Dirac delta function and ~ is the coordinate along the normal to F. 

We multiply the equations of motion by e i(c~' x), where ~ = (al, a2, c~3), and integrate over V. Using 
Gauss' theorem, to find the Fourier transform 

i(a x) 
~k(a) = ~u~(x)e " dV x 

V 
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we have the following system of equations 

Ask(a)~t k = (C,jklajCt J-  pO125sk)fik(O¢) = F,(a)  + Ws(a ) (4.1) 

where 

F,(a)  f (osjn j . , i(o;, = -- t ~ j C s j k l u k n l ) e  x ) d S x  

s 

. ~ 0 i(a, x ) . o  
Ws(O~  ) = - - l a j C s j k l J n k ) ~ l e  a a x  

F 

(4.2) 

Solving system (4.1) for the transform ak, we obtain 

Pks(O~)(Fs((X) + Ws(a))  
ilk(a) = Po(c~) , po((X) = detA (4.3) 

where p~(o~) are components of the matrix associated to the matrix A = {A~}. Note that p0(o~) is a 
sixth-degree polynomial,p~s(O~) is a fourth-degree polynomial in (~ andp0(ct) -- 0 is Christoffel's equation, 
which has three roots 

7 = 151 = k~m(ri), m = 1, 2, 3, (IriI = 1, k = 03(c3333]P) -1/2) 

corresponding to three surfaces which below will be assumed to be different (although this limitation 
is not always satisfied; for example, it is not satisfied in the isotropic case when two of the surfaces 
coincide). 

The Fourier transforms ak((z), by virtue of representation (4.3), are mesomorphic functions, but, on 
the other hand, it is well known that the Fourier transform of the function from Lp(V), p > 1 is an 
integral function. Thus, it is necessary for the numerator on the right-hand side of Eq. (4.3) to vanish 
on the sets 

0~(m)(]]) = kqm('q)ri , m = 1, 2, 3 

which leads to a system of resolvents, three of which are independent, for example the following 

pls(O~(m)(ri))(Fs(o~(m)(rl)) + Ws(o~(m)(q))) = 0; Iql = 1, m = 1, 2, 3 (4.4) 

Equalities (4.4) can be treated as a system of boundary equations relating boundary displacements 
and stresses to displacement jumps on a crack. Note that this system of equations is suitable for carrying 
out the procedure of reconstructing plane cracks. 

Determination o f  the plane II. Assuming all the vector components of the displacements and stress 
vectors on the entire external boundary of the solid are known, the operators Fs(kgm(ri)ri) can be 
calculated for any unit vector 11. Thus, from Eqs (4.4) it is necessary to determine the jumps Zt and the 
carrier of the crack - the surface F. When a priori information is available indicating that F is a plane 
region (F C FI), it is possible to compare the equations for determining the parameters characterizing 
the plane II without finding the jumps Zl. 

Let x = Crlo + qltl + 1]2t2 be the parametric equation of the plane H, where 

Iri01 = Irl,I = Iri2[ = 1, (t 1,t2)~ D, (rl o ,ri1) = (ri0, ri2) = 0, n o = rl 0 

We will introduce into consideration the functions 

Gm(ri,/1, t2) = (0~(m)(TI)' X) = k~m(ri)(T~, cTI 0 -4- riltl 4" r i2 t2)  = 

= kgm(rl)[c(11, ri0) + t~(rl, rll) + t2(r l ,  112)] 
(4.5) 
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Assuming here that 1] = rl0, we find that 

o o 
Gm(TIO, tl, t2) = k~mc, ~m --'-- ~m(l]O ) 

and does not depend on t 1 and t 2. Thus, putting 

I)~t(x(t))dtldt2 = Yt 
D 

from relations (4.4) we obtain that 

0 . 0 . 0 0 0 
Ws(k~mqO) = --Ik~mCsjkll]OjllokeXp[/Om] Yl' Om = k~mc 

To find Yt we obtain the linear algebraic system 

3 

Z Dlm Yl = bm 
l =  1 (4.6) 

• 0 0 . 0 0 0 
Dlm= lkpls(kqm'qO)qmCsjkiTlOjqOk, bm = exp[-tOm]Pls(kqml]o)Fs(k~ml]O) 

Taking into account that Yl are real while Dim a r e  pure imaginary quantities, we obtain a system of 
three transcendental equations for determining the components of the unit vector q0 and the constant c 

Re(bm) = 0, m = 1, 2, 3 (4.7) 

Plane deformation o f  an orthotropic solid. We will give the form of the equations for determining 110 
in the case of the plane deformation of an orthotropic solid with boundary L (in the OX1X2 plane). 

0 The corresponding operators and the curves gm = ~m(q0) (m = 1, 2) are given in [12]. We will introduce 
0 0 the angle (P0 such that 110 = (cosq%, sinq%). Then, introducing the notation ~m(X) = (rio, x)kgm and taking 

into account the propertyPij(ky) = k2pij(y), we find 

o ~ . o o Jexp.O Fj(k~mrlO) = t j (x ) - tk~majkuk(x  ) [t~m(x)]dlx, j = 1,3; m = 1,2 

L 

where 

0 
tj(x) = (Yjknk/c33, ajk = ajk(rlo, n) 

0 0 
a l l  = ] t l n l s i n q ) o + 7 5 n 3 c o s q ~  o, a l 3  = 3 t s n l s i n g ~ o + Y 7 n 3 c o s q 0 0  

o o 
a31 = 7 7 n l s i n ~ o + ' Y 5 n 3 c o s q O 0  , a33 = " Y 5 n l c o s t P o + n 3 s i n ( P o  

0 ) 2 . 2  . .  0 . 2  
P l l ( g m l ] O  = ('YsCOS 9 0  + s m  qOo)tg,n) - 1  

0 . 0 2 
P t 3 ( ~ m l ] 0 )  = - ( 7 5  + ~t7)SlntP0COSq00(~m) 

(~ are dimensionless elasticity constants), while the system of two equations of the form (4.7) for finding 
q00 and c acquires the form 

0 I 0 0 0 0 . 0 0 Om)]dl ~ = m = pls(qml]O) [t~(x)coS(~m(X)-Om)+kqma~kuk(x)sm(~m(X) - O, 1,2 
L 

(4.8) 
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5. N U M E R I C A L  E X P E R I M E N T S  

As an example of the application of the method for determining the position of a crack, that was proposed 
in the concluding part of Section 3 (Example 1), and an example of the use of system (4.8) 
(Example 2), we considered the steady oscillations (with a frequencyf = 1.0 kHz) of a square with sides 
of 0.1 m under conditions of plane strain, weakened by a rectilinear crack. To solve the direct problem, 
we used the ACELAN finite-element package [17]; in the calculations, the finite element grid was 
artificially concentrated in the vicinity of the crack tips; the total number of nodes was 1181 in Example 
1 and 1550 in Example 2. On the each side of the square, besides the nodes at its tips, a total of nine 
internal nodes was selected, equidistant from each other. The displacements found at these nodes 
modelled the process of measuring the boundary fields. When calculating functional (2.4), the factors 
of the integrands were interpolated by continuous piecewise-linear functions. 

Example 1. Identification of  a crack in an &otropic square. The coordinates of the ends of the crack 
wereA(0.02; 0.06) and B(0.04; 0.08) (Fig. la). The material of the square was steel. On the bottom and 
top sides of the square, a balanced load was specified in the form of a normal stress (evenly distributed 
with intensity Q0 = 103 N/m and varying linearly from zero to Q0), and the left- and right-hand surfaces 
were load-free. 

Figures l(b) and (c), for the undeformed state of the region, show the distributions (with an isoline 
grid) of the amplitude values of the vector components of the displacements: the components u2 (Fig. lb), 
the maximum value of the amplitude, equal to 1.15 x 10 -9 m and indicated with an asterisk, corresponding 
to the light background, and the minimum value, equal to -1.06 x 10 .9 m and shown by a light point, 
corresponding to the dark background, and the components u3 (Fig. lc), the maximum value being equal 
to 2.98 x 10-9-m, and the minimum value to -2.45 x 10 -9 m. 

Note that, as a result of a numerical solution of non-linear equation (3.10), several of its roots were 
found, and, to select a single solution, it was necessary either to analyse the initial system in a certain 
set of frequencies or to change the nature of the load (the uniform stress distribution was changed to 
a linear distribution). In a numerical simulation, we investigated the influence of the size of the defect 
on the relative errors in determining the angle 0 and the distance c 

50 = [(0 o -0n) /00]x100%,  5 c = [(c 0 .cn) /c0]x100% 

where 00 = re/4 and Co = 0.04"f2 m are precise values, while 0n and c n are the values of the parameters 
obtained. 

In the left-hand and lower parts of Fig. 2, the values of 5c when the crack length L changes from 
0.0035 to 0.2083 m are shown by the light points, and here the values of 5o (dark points) do not exceed 
1% in modulus. 

The check of the stability of the algorithm for crack reconstruction to random errors of the input 
data was modelled by pseudorandom perturbations of the amplitudes of "measured" quantities in such 
a way that 

~gi(X(k)) ~- Ui(X(k))(1 + (2R k -  1)e) 

where the perturbed values are indicated by a tilde, k is the number of the point on the boundary at 
which the "measurements' are carried out, Rk is a random quantity, evenly distributed in the interval 
(0, 1) and e = 10 m is a small parameter. The right-hand upper part of Fig. 2 shows the errors 5c and 50 
when the exponent m changes from -5 to -1; it can be seen that the order of the reconstruction error 
does not exceed the order of the error of the input data. 

Example 2. Identification of  a crack in an orthotropic square. The coordinates of the crack were A 
(0.02; 0.08) and B (0.04; 0.06) (Fig. 3a). The material of the square was austenitic steel [12]. A balanced 
load was specified on all sides of the square in the form of a uniformly distributed normal stress with 
intensity Q0 = 104 N/m. 

Figures 3(b) and (c), for the undeformed state of the region, show the distributions (with an isoline 
grid) of the amplitude values of the vector components of the displacements; the components Ul 
(Fig. 3b), the maximum value of the amplitude, equal to 1.68 x 10 -9 m and indicated with an asterisk, 
corresponding to the light background, and the minimum value, equal to -1.72 x 10 .9 m and indicted 
with a light point, corresponding to the dark background, and the components u 3 (Fig. 3c), the maximum 
value being equal to 2.38 x 10 .9 m and the minimum value to -2.29 × 10 .9 m. 
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As a result of a numerical solution of the non-linear system of equations (4.8), several of its 
solutions were found, and here, for a unique determination of the true solution and to filter out 
"phantom" solutions, it was necessary either to change the nature of the load (to free the left- and 
right-hand sides from stresses) or to conduct a numerical simulation in a certain set of frequencies. 
The error of the values of the angle and distance obtained for % = ~/4 and c = 0.05"42 m did not 
exceed 1%. 

A check of the stability of the algorithm for crack reconstruction to errors of the input data led to 
results similar to the data for Example 1. 
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